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Abstract—The class of density-based clustering algorithms
excels in detecting clusters of arbitrary shape. DBSCAN, the
most common representative, has been demonstrated to be useful
in a lot of applications. Still the algorithm suffers from two
drawbacks, namely a non-trivial parameter estimation for a
given dataset and the limitation to data sets with constant
cluster density. The first was already addressed in our previous
work, where we presented two hierarchical implementations of
DBSCAN. In combination with a simple optimization procedure,
those proofed to be useful in detecting appropriate parameter
estimates based on an objective function. However, our algorithm
was not capable of producing clusters of differing density. In this
work we will use the hierarchical information to extract variable
density clusters and nested cluster structures. Our evaluation
shows that the clustering approach based on edge-lengths of
the dendrogram or based on area estimates successfully detects
clusters of arbitrary shape and density.

I. INTRODUCTION

Extracting knowledge from data is the main goal of machine
learning. In recent years databases showed a large increase in
complexity, including a growing number of data set size and
dimensions. Clustering describes the task of finding groups
of similar objects. However, most clustering algorithms have
limitations regarding shape and structure of clusters or finding
appropriate parameter instantiations, restricting their application
to modern data sets.

Despite the known drawbacks standard algorithms are often
applied because of their simplicity. Nevertheless, non-expert
users can have problems in interpreting results and adapting
parameters to their use case. Many works focused on resolving
known issues of specific clustering algorithms. In this work
we will address limitations of the DBSCAN algorithm.

The DBSCAN algorithm proposed by Ester et al. [1], is the
most commonly known representative of density-based clus-
tering algorithms. Areas of higher density than the remainder
of the data set are called clusters. Density is estimated as the
number of objects (in this work also referred to as points)
in a local environment. Fixing a radius for the environment
and a minimal number of points in it, lets us detect areas of
high density. This definition allows clusters of arbitrary shape.
Nevertheless, estimating an appropriate threshold and size of
the local environments is non-trivial.

In a previous work we proposed an alternating optimization
procedure [2] to find an optimal parameter combination
regarding a given objective function. The implementation

was driven by two hierarchical adaptations of the DBSCAN
algorithm, namely ε-HDBSCAN and mPts-HDBSCAN. In both
of these the eponymous parameter was fixed and all valid
clustering instantiations of the other parameter were computed.
For an efficient computation of the hierarchies, we made use
of the monotonicity of the parameter space. Regarding the
parameter ε the hierarchy generation algorithm is similar to
the one proposed by [3]. We adapted the procedure for the
mPts parameter to create comparable hierarchies.

Our previous work was limited to horizontal cuts of the
hierarchy. Those represent a DBSCAN clustering of a certain
parameter combination. In this work we want to focus on
elaborating on structural information about nested clusters, ulti-
mately implementing non-horizontal cuts for detecting clusters
of differing density. Section II will be used to reflect on the
original DBSCAN algorithm and how to generate a hierarchy of
clusters. In Section III we will present our approaches for non-
horizontal cuts of the DBSCAN dendrograms. Our algorithms
will be compared to local optimal DBSCAN clusters found
by aoDBSCAN [2] in Section IV. Therefore, we test both
algorithms on standard data sets and discuss their results. We
will close this paper with a summary of the capabilities of
non-horizontal cuts in Section VI.

II. PRELIMINARIES

A. DBSCAN

This section will be used to recap the original DBSCAN
algorithm [1]. It became well known for being one of the first
density-based clustering algorithms.

The density of a local area is estimated by counting the
number of elements in reach of a certain length. We will
refer to the local surrounding of each point by the term ε-
neighborhood, which is further defined by:

Nε(p) = { q ∈ D
∣∣ dist(p, q) ≤ ε } (1)

The parameter ε describes the radius of a hypersphere centered
at point p. All points with distance less or equal than ε will
be contained in this hypersphere and, therefore, will be part of
the ε-neighborhood. To filter for areas of high density we fix a
minimum threshold for the size of the neighborhood sets. Each
point, which size of the neighborhood set exceeds a value of
mPts, will further be called core. The set of all core points can
be described by the equation:

coresε,mPts = { p ∈ D
∣∣mPts ≤ |Nε(p)| } (2)978-1-4799-7560-0/15/$31 c©2015 IEEE



The DBSCAN algorithm defines clusters as overlapping
areas of high density. We will make use of the terms density-
reachable and density-connected to further discriminate the rela-
tionship between two points. Let (directly) density-reachability
be defined by:

Definition 1 ((directly) density-reachable): A point q is
directly density-reachable from point p, if q ∈ Nε(p) and
p is a core-point. Note that the conditions p ∈ Nε(q) and
q ∈ Nε(p) are equivalent. Furthermore, two points p, q are
density-reachable if there exists a chain of points p1, . . . , pn
with p1 = p and pn = q such that for each 1 ≤ i < n, pi+1 is
directly density-reachable from pi.
Density-connectedness further loosens the restrictions of
density-reachability by allowing two points to be connected if
they have a common source of density-reachability.

Definition 2 (density-connected): Two points p, q are density
connected to each other if there exists a point o from which
both points are density-reachable.

Finally, clusters are defined as the maximal set of points be-
ing density-connected to each other. Non-core points belonging
to a cluster, therefore being density-reachable by at least one
core point, are called border points. Points which neither fulfill
the core-condition nor lie in the neighborhood of a core, will
be determined as noise. Given a pair of ε and mPts, DBSCAN
will automatically detect the number of clusters and the amount
of noise in a data set. The average runtime of DBSCAN is
O(n · log n), while the worst case complexity was shown to
be O(n2) [4].

B. Creating Hierarchies of DBSCAN clusterings

While the original implementation of DBSCAN produces
clusters of one specified density level, the monotonicity of the
parameter space can easily be exploited to produce a hierarchy
of clusterings. A basic observation is that increasing the radius
of the neighborhood (ε) or decreasing the number of minimal
points in each neighborhood (mPts) results in expanded clusters.
Both observations will be formalized in the following.

Widening the radius of the neighborhood, done by increasing
the value of ε, can result in points being added to the
neighborhood set. This will always be the case when ε becomes
greater than the distance of two points. In general we can show
that for two radii ε1 > ε2 the following relationship holds true:

{ q ∈ D
∣∣ dist(p, q) ≤ ε1 } ⊇ { q ∈ D ∣∣ dist(p, q) ≤ ε2 }

Nε1(p) ⊇ Nε2(p)
(3)

The possible increase of the ε-neighborhood also influences
the number of cores. For a fixed value of mPts we can infer:

{ p ∈ D
∣∣mPts ≤ |Nε1(p)| } ⊇ { p ∈ D

∣∣mPts ≤ |Nε2(p)| }
coresε1,mPts ⊇ coresε2,mPts

(4)

Similar effects can be achieved by relieving the core-
condition, done by decreasing the value of mPts. This way
further points can exceed the density threshold and will be

added to the set of core points. For two density-thresholds
mPts1 < mPts2 the following relationship holds true:

{ p ∈ D
∣∣mPts1 ≤ |Nε(p)| } ⊇ { p ∈ D

∣∣mPts2 ≤ |Nε(p)| }
coresε,mPts1

⊇ coresε,mPts2

(5)

In both cases the number of core points needs to be updated
after a change of the parameter. Starting with a small ε and
increasing it stepwise until every point belongs to the same
cluster will result in the production of a full hierarchy of
clusters. Since each cluster can only grow in size, we can
efficiently incorporate updates for each step by adding points
which are now density reachable by a core point.

For this purpose, we define the minimal distance in which
the size of the neighborhood set is greater or equal to the
specified minimum number of points. We will further refer to
this using the term core distance of a point and define it by:

Definition 3 (core distance): Let the core distance
dcore,mPts(xi) of a point xi ∈ X be the distance to its
mPts-nearest neighbor [5].

Using the core-distance we can define the distance in which
a point is density-reachable to another. Therefore, we will use
the term reachability distance and define it by:

Definition 4 ((mutual) reachability distance): Let the reach-
ability distance of two points xi, xj ∈ X be the distance, at
which either xi is density reachable by xj or the other way
around.

dreach,mPts(xi, xj)

= max
{
min{dcore, mPts(xi), dcore, mPts(xj)}, d(xi, xj)

}
(6)

Symmetry can be forced by requiring both points to fulfill the
core-condition. In this case we speak of mutual reachability
distance.

dreach,mPts(xi, xj)

= max
{
max{dcore, mPts(xi), dcore, mPts(xj)}, d(xi, xj)

}
(7)

Note that by forcing symmetry, as it was originally suggested
by [3], border points would be ignored in the clustering process.
We relaxed this condition to cover up the existence of border
points, since they are characteristic of a stepwise merging
process of two clusters.

Generating a hierarchy can trivially be done by iterating
through a sorted list of reachability distances and updating
neighborhood sets of involved clusters. Another approach adds
the reachability distance of each pair of points xi, xj as an edge
with weight dreach,mPts(xi, xj) between two homonym nodes to
a graph. Computing a minimum spanning tree on this graph
results in a condensed cluster hierarchy representation. The
full hierarchy can be extracted by continuously removing the
largest edge and noting the connected components of the graph.
In case that the asymmetric reachability distance was used,
only core-points can be used for determining such connected
components. The original implementations of the hierarchy
generation process can be reviewed in [2], [3].



III. NON-HIERARCHICAL CUTS

The hierarchies produced in the previous section can be
used in many ways. One is to fix an optimal horizontal cut
height. This will result in clusters of about the same density.
1(a) and (b) show the result of this clustering approach using a
dataset with a simple hierarchical structure. Nevertheless, the
red, green and violet clusters are not completely the same and
nested cluster structures get lost throughout the horizontal cut
process. The complete hierarchical information is presented
in Figure 1(c). The complete hierarchical information can be
overwhelming for a fairly small data set. Our task will be to
reduce the amount of nested structures, while still highlighting
critical changes in density.

Taking a closer look at the example shows that the merging
process between both clusters at the bottom needs less change
in density than incorporating the cluster at the top. For an exact
calculation of the density change we would need the number
of points contained and the clusters area (or hyper-volume).
The latter is a non-trivial task for arbitrary shaped clusters,
since the calculation of a non-convex hull is complex and not
well defined. We will provide two solutions for this process.
In the first we will refrain from an area calculation and use
the necessary parameter change of the merging process as an
approximative density change of the cluster. In our second
solution, we try to estimate the area of a 2D set of points
by using alpha shapes and use this as our basis for a more
profound density estimation. In Section IV we will compare
achieved results of both algorithms.

A. Cut depending on parameter changes

Each edge in the dendrogram marks a transition in density
of the cluster before and after the merge. Density separated
structures will be merged by a larger edge than clusters with
a smooth transition. For this reason, we will measure the
height difference of clusters connected by an edge and retain
subclusters (children node) in the final hierarchy if they were
connected by a large edge. Sorting the edges by their height
difference of children and parent node lets us fix a threshold
for which edges will be cut. A valuable hyper-parameter in our
observations was cutting edges longer than the 0.95 quantile
of edge lengths. For our cut presented in Figure 1(c) this will
result in one cluster at the top being a nested cluster of the
complete data set. The groups of points at the bottom will just
belong to the complete cluster since their density transitions
are much more smoothly.

B. Cut depending on area of non-convex shapes

While our first method provides a fairly simple solution
for density estimation, it does not account for the change of
points between two merges. Adding just one point to the cluster
would be weighted equally to merging two large clusters. Our
second solution will make use of shape descriptors for clusters
of arbitrary shape.

Calculating the area of a set of points can be solved
by determining the convex hull throughout calculating the
outer border of the Delaunay triangulation. See Figure 2(a)

(a) Horizontal cut by height (b) Hierarchical example dataset

(c) Non-horizontal cut by height dif-
ferences of child- and parent-node

(d) Hierarchical example dataset

Fig. 1: Visualization of dendrogram cuts and the respective
colorization of the data set

Algorithm 1 Edge Quantile Cut

Input: G = DBSCAN hierarchy, quantile

for all (u, v) ∈ G.edges() from 1 to N do
height before ← G.nodes(u).height)
height after ← G.nodes(v).height)
height change ← height after − height before
cutlist.append( (height change,

G.nodes(u).points,
G.nodes(u).height))

end for

cutlist ← get biggest heightchanges(quantile)
for all p ∈ Points do

set labels[p] to the index of the first
cutlist element it is part of

end for
return labels

for an exemplary demonstration of simple data set and its
Delaunay triangulation. Under the consideration of the density
distribution, this convex hull can span sparse areas. We want to
reduce the area spanned, while maintaining the characteristic
shape of the data set.

To create a more appropriate non-convex hull of a set of
points, we will make use of α-shapes proposed by Edelsbrunner
et al. [6]. The α-complex of S is a subcomplex of the
triangulation of S, which only contains α-exposed k-simplices
(0 ≤ k ≤ d). A simplice is α exposed if there is an open disc
of radius

√
α through the vertices that do not contain any other



(a) Delaunay triangulation (b) α-shape, α = 0.5 (c) α-shape, α = 0.1

Fig. 2: Delaunay triangulation and α-complex/shape for the moons data set

point of S, using the same metric as for the computation the
underlying triangulation. The corresponding α-shape is defined
as the interior space of the α-complex [7]. Two examples of
α-shape are shown in Figure 2(b,c).

Algorithm 2 Alpha Shape Cut

Input: G = DBSCAN hierarchy, quantile

cutlist ← list()
for all (u, v) ∈ G.edges() from 1 to N do

area before ← area of (G.nodes(u).points)
area after ← area of (G.nodes(v).points)
density change ← area after − area before
cutlist.append( (density change,

G.nodes(u).points,
G.nodes(u).height))

end for

cutlist ← get biggest densitychanges(cutlist, quantile)
for all p ∈ Points do

set labels[p] to the index of the first
cutlist element it is part of

end for
return labels

IV. EXPERIMENTAL SETUP

We evaluated our algorithms on multiple standard data sets
available at [8]. The algorithm can be downloaded at [9].
Those clustering settings differ in size, density-distributions
and incorporate flat and hierarchical structures. Our results
are compared to performance values of our previous paper on
aoDBSCAN [2], for which we used the density based silhouette
coefficient as optimization criterion. We calculated the external
validation measures entropy, purity, f-measure and v-measure
to validate the clustering results.

Entropy is a concept of information theory, where it is used
to describe the information contained in a message received.

A clustering C can be seen as information source about the
true structure P of the dataset and can be tested as predictor
for exactly the same.

E(C,P) = −
∑
i

pi

∑
j

pij
pi

log
pij
pi

 (8)

Entropy has a range of [0, l logK ′]. Values near 0 describe
an approximately perfect clustering, where each cluster Ci is
congruent with a partition Pj . The maximal value of logK ′

states that any point in a cluster Ci is equiprobable to be in
any partition Pj .

A closely related concept to entropy is purity, which is
described by the extent in which a cluster contains objects of
a single class [10].

P(C,P) =
∑
i

pi

(
max

j

pij
pi

)
(9)

The range for the purity measure is (0, 1]. An optimal clustering
assigns all nodes of a cluster to the same partition and therefor
achieves a value of 1.

The f-measure is based on the harmonic mean of the two
concepts precision and recall from the information retrieval
community. The combination of both averages the extent
in which clusters contain only objects of one true partition
(precision) and the extent in which a cluster contains all
elements of this partition (recall). The measure can be described
by the following formula:

F(C,P) =
∑
j

pj max
i

(
2
pij

pi

pij

pj

pij

pi
+

pij

pj

)
(10)

As it is the case for purity, the f-measure shares the range of
(0, 1], where an optimal clustering achieves a value of 1.

The v-measure is based on the harmonic mean of homo-
geneity and completeness. This combination follows a similar
concept as the f-measure, but showed superior results in
experiments by [11]. The v-measure can be calculated by:

V(C,P) =
2 · Hom(C,P) · Compl(C,P)

Hom(C,P) + Compl(C,P)
(11)



Fig. 3: Results on the Moons data set

Fig. 4: Results on the Blobs-1000D showing first 2 dimensions

V. RESULTS

The moons data set consists of two entwined sickles of nearly
constant density. Figure 3 shows the results of the clustering
process using an initial mPts values of 5. As it can be seen both
non-horizontal cuts detect the clusters correctly. Additionally,
the edge-quantile cut excludes some points in the lower sickle,
since the ε-value has to be increased to include all those points
in the cluster. The α-shape cut does not make these exclusions
since the increase of the clusters area is negligible using an
α-shape estimate. Since the density is constant in this data
set aoDBSCAN is successful in determining an appropriate
parameter combination.

In a next step we wanted to evaluate our algorithms in high
dimensional space. For this purpose, we created a data set
including three separated hyper-spheres in 1000 dimensional
space. Finding appropriate configurations for ε becomes very
hard if done by the user. aoDBSCAN finds appropriate ε and
mPts values to distinguish all three clusters. The edge quantile
is also able to find the clusters, because of the large increase
of ε to merge the clusters. We currently cannot provide test
results for the α-shape cut, since our implementation misses
an hyper-volume estimate for polygon meshes.

The R15 data set contains 15 clusters of constant density
in which eight clusters in the middle form a dense and partly
overlapping group. Those can only be separated by DBSCAN
using a higher density threshold. Therefore, aoDBSCAN is not
able do distinguish the clusters in the center. Edge-quantile
cut recognizes the center as region of higher density, but does
not separate contained clusters. The smooth transition between

Fig. 5: Results on the R15 data set

Fig. 6: Results on the Flame data set

Fig. 7: Results on the Moons differing density data set

the clusters implies only slight changes in ε values per merge.
In contrast α-shape cut is able to recognize merges between
clusters, since the area doubles during a merge.

The flame data set highlights a smooth density transition
between two clusters under the presence of two noise points.
These add an extreme density transition into the hierarchy.
aoDBSCAN was not able to detect an appropriate parameter
combination using the density-based silhouette coefficient
criterion, excluding only few points at the outer edges of
the clusters. Because of the large area change at the moment
of the merge, the α-shape cut is able to detect the merge
between both clusters. The edge-quantile cut is not able to do
the same, since the edge length distribution is skewed through
the presence of noise.

After testing for smooth density transitions we incorporated
a data set containing one large density change. The moons
differing density data set consists of two sickles with large
density variation. aoDBSCAN is not able to find a parameter
combination yielding the desired clustering. This highlights the
general incapability of aoDBSCAN to discriminate clusters with
major differences in density levels. Both non-horizontal cuts
are able to detect the changes, nevertheless, the huge amount
of noise in the upper sickle prevents them from returning a
perfect clustering result.

We used the compound data set to test our algorithm’s
performance on a variety of hierarchical structures. While the
two clusters in the bottom left corner form a group of constant
density, both other groups contain clusters of differing density.
aoDBSCAN is not able to find appropriate cluster parameters

Fig. 8: Results on the Compound data set



TABLE I: Evaluation Moons data set

method entropy purity f-measure v-measure

aoDBSCAN 0.00 1.00 1.00 1.00
edge-quantile 0.09 0.99 0.89 0.96
α-shape 0.00 1.00 1.00 1.00

TABLE II: Evaluation Blobs-1000D data set

method entropy purity f-measure v-measure

aoDBSCAN 0.03 1.00 1.00 1.00
edge-quantile 0.03 1.00 1.00 1.00
α-shape — — — —

under the presence of multiple reasonable density levels. Edge-
quantile cut produced a nearly perfect result, miss-assigning just
a few points in the transition of both clusters in the upper-left
corner. The α-shape cut failed to return a correct clustering.

VI. CONCLUSIONS

In this paper we proposed two non-hierarchical cuts for
DBSCAN dendrograms. Those utilize information about param-
eter and density changes to find nested clusters in hierarchical
structured data sets, which condenses hierarchical information
to meaningful clusters. Our algorithms performed well in
various clustering scenarios, containing differing number of
points, clusters and a variety of density changes.

Our first proposal, the edge-quantile cut, nearly perfectly
clustered the compound data set, which consists of multiple
nested cluster structures and density transitions. Nevertheless,
same results could not be achieved in the flame data set, since
the presence of noise seems to have a negative influence on
this algorithm. The second algorithm, α-shape cut, is based
on non-convex hulls. We estimate the hulls area of the points
before and after the merge. Merges with a large increase in
density highlight nested structures and will be kept. In our
experiments α-shape cut excelled in identifying smooth density
transitions between clusters, as it can be seen in the results for
the R15 and the flame dataset. Produced α-shapes showed to be
a good approximation of the non-convex shape. Nevertheless,
it depends on the choice of an appropriate α value. Otherwise
the area of the polygon diminishes too fast and it becomes
hard to differentiate between clusters. We hope to improve
on this using recently proposed shape descriptors by Braune
et al. [12]. Another problem of our α-shape implementation is
the current limitation to 2D-data sets. We would like to include
hyper-volume estimation in a future work. An alternative would
be to estimate the area size of each subspace.

TABLE III: Evaluation R15 data set

method entropy purity f-measure v-measure

aoDBSCAN 0.00 1.00 0.59 0.74
edge-quantile 0.00 1.00 0.59 0.74
α-shape 0.04 0.99 0.86 0.94

TABLE IV: Evaluation Flame data set

method entropy purity f-measure v-measure

aoDBSCAN 0.46 0.99 0.78 0.02
edge-quantile 0.45 0.99 0.77 0.02
α-shape 0.31 0.96 0.96 0.77

TABLE V: Evaluation Moons differing density data set

method entropy purity f-measure v-measure

aoDBSCAN 0.41 0.99 0.85 0.01
edge-quantile 0.53 0.98 0.97 0.89
α-shape 0.68 0.92 0.92 0.78

In contrast to horizontal-cuts or DBSCAN parameter esti-
mation algorithms, our hierarchy simplification algorithms are
able to detect clusters of differing density. Hereby, expanding
the set of use-cases for density-based clustering algorithms.
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